Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Rui Ren, Xue-Mei Li, Qiang Li and Shu-Sheng Zhang*

College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.058$
$w R$ factor $=0.173$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Cyano-3-fluorophenyl (2E)-3-(3-methoxy-4-pentyloxyphenyl)acrylate

The two molecules in the asymmetric unit of the title compound, $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~F}$, differ in the orientation of the 4-cyano-3-fluorobenzene ring with respect to the acrylate linkage. In one of the molecules, the pentyloxy chain has an extended conformation and in the other it is folded. The molecules are linked into a three-dimensional framework by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds, and by $\pi-\pi$ interactions.

Comment

The nematic isotropic transition temperature of compounds containing a fluoro atom at the ortho- or meta- position with respect to the cyano group on a phenyl ring are only slightly lower than the corresponding esters with an F atom (Kelly et al., 1984). However, the viscosity and driving voltage needed for the new esters are remarkably higher than those of the analogous non-fluoro-substituted phenyl esters. In order to obtain liquid-crystal materials with excellent properties (Sung et al., 2004), the title compound, (I), was synthesized. We report here the crystal structure of (I).

(I)

The asymmetric unit of (I) contains two crystallographically independent molecules. The corresponding bond lengths and angles of these two molecules agree with each other (Table 1) but they differ in the orientation of the 4-cyano-3-fluorobenzene ring with respect to the acrylate linkage (Fig. 1). The dihedral angle between the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 8-\mathrm{C} 10$ planes is 74.93 (9) ${ }^{\circ}$ and that between the $\mathrm{C} 24-\mathrm{C} 29$ and $\mathrm{O} 5 / \mathrm{O} 6 / \mathrm{C} 30-$ C32 planes is $68.28(8)^{\circ}$. Also, the torsion angles $\mathrm{O} 3-\mathrm{C} 17-$ C18-C19 [177.8 (2) ${ }^{\circ}$] and O7-C39-C40-C41 [60.7 (3) ${ }^{\circ}$] indicate that in one of the molecules the pentyloxy chain is in an extended conformation and in the other it is folded. In both molecules, the methoxybenzene ring is nearly coplanar with the acrylate linkage. The torsion angles $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ $\left[-178.5(3)^{\circ}\right]$ and $\mathrm{C} 30-\mathrm{C} 31-\mathrm{C} 32-\mathrm{C} 33$ [176.9 (2) ${ }^{\circ}$] indicate the trans configuration of the double bonds.

In the crystal structure, molecules are linked into a threedimensional framework by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$

Received 5 December 2005 Accepted 14 December 2005 Online 21 December 2005
hydrogen bonds (Table 2). The packing is further stabilized by $\pi-\pi$ interactions involving the C2-C7 and C24-C29 benzene rings at (x, y, z) and $(x-1, y, 1+z)$, respectively, with a centroid-centroid distance of 3.788 (2) A.

Experimental

1-Bromopentane ($4.53 \mathrm{~g}, 0.03 \mathrm{~mol}$) in ethanol (30 ml) was added dropwise to a solution of 3-(4-hydroxy-3-methoxyphenyl)acrylic acid $(1.94 \mathrm{~g}, 0.01 \mathrm{~mol})$ in $17.0 \% \mathrm{KOH}$ solution $(10 \mathrm{ml})$. The mixture was refluxed for 24 h and extra KOH solution was added to remove the additional products. The mixture was then acidified to give a white precipitate, which was filtered off and recrystallized from ethanol to obtain 3-(4-pentyloxyphenyl)acrylic acid. 3-(4-Pentyloxyphenyl)acrylic acid $(0.79 \mathrm{~g})$ and 1,3 -dicyclohexylcarbodiimide (0.62 g) were dissolved in tetrahydrofuran (THF, 20 ml) and a solution of 2-fluoro-4-hydroxybenzonitrile (0.68 g) and 4-dimethylaminopyridine $(0.01 \mathrm{~g})$ in THF $(20 \mathrm{ml})$ was added. The mixture was stirred at room temperature for 24 h and then filtered. Colourless single crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of a THF/ethanol $(1: 4 \mathrm{v} / \mathrm{v})$ solution over a period of 2 d .

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FNO}_{4}$
$M_{r}=383.41$
Triclinic, $P \overline{1}$
$a=12.193$ (4) A
$b=12.506$ (4) Å
$c=14.449$ (5) \AA
$\alpha=82.348(7)^{\circ}$
$\beta=68.816(6)^{\circ}$
$\gamma=83.036(7)^{\circ}$
$V=2029.7(12) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.255 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1724 \\
& \quad \text { reflections } \\
& \theta=2.3-22.6^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.41 \times 0.18 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Simens SMART 1000 CCD areadetector diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.963, T_{\text {max }}=0.992$
11493 measured reflections

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059\)
\(w R\left(F^{2}\right)=0.173\)
\(S=0.98\)
7827 reflections
524 parameters
```

Table 1
Selected bond lengths (\AA).

O1-C8	$1.369(3)$	$\mathrm{N} 2-\mathrm{C} 23$	$1.140(3)$
O1-C5	$1.390(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.432(4)$
O2-C8	$1.191(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.450(3)$
O5-C30	$1.375(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.318(3)$
O5-C27	$1.387(3)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.439(4)$
O6-C30	$1.192(3)$	$\mathrm{C} 30-\mathrm{C} 31$	$1.445(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.139(4)$	$\mathrm{C} 31-\mathrm{C} 32$	$1.327(3)$

Figure 1
The two independent molecules of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The F atom in each molecule is disordered over two positions and both positions are shown.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C28-H28 \cdots O 4	0.93	2.58	3.398 (3)	147
$\mathrm{C} 31-\mathrm{H} 31 \cdots \mathrm{O} 6^{\text {i }}$	0.93	2.48	3.410 (3)	174
$\mathrm{C} 37-\mathrm{H} 37 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.39	3.246 (3)	153
$\mathrm{C} 44-\mathrm{H} 44 A \cdots \mathrm{~F}^{\text {iii }}$	0.96	2.37	3.262 (4)	155

In both independent molecules, the F atom was found to be disordered over two positions, implying two different orientations for the 4-cyano-3-fluorobenzene ring. The occupancies of the disordered positions $\mathrm{F} 1 / \mathrm{F} 1^{\prime}$ and $\mathrm{F} 2 / \mathrm{F} 2^{\prime}$ were refined to 0.791 (4)/0.209 (4). The $\mathrm{C}-\mathrm{F}$ distances were restrained to be equal and the $U^{i j}$ components of the disordered atoms were approximated to isotropic behaviour. H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This work was supported by the Program for New Century Excellent Talents in Universities (grant No. NCET-04-0649) and the Project of Educational Administration of Shandong Province (grant No. J04B12).

References

Kelly, S. M. \& Schad, H. (1984). Helv. Chim. Acta, 67, 1580-1587.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sung, S. J., Cho, K. Y. \& Park, J. K. (2004). Mater. Sci. Eng. C, 24, 181-184.

